What is the canonical way of applying different transformations on different columns of a dataset. From the docs:
n_samples = 10
n_features = 3
n_tasks = 1
ids = np.arange(n_samples)
X = np.random.rand(n_samples, n_features)
y = np.random.rand(n_samples, n_tasks)
w = np.ones((n_samples, n_tasks))
dataset = dc.data.NumpyDataset(X, y, w, ids)
transformer = dc.trans.NormalizationTransformer(transform_X=True, dataset=dataset)
dataset = transformer.transform(dataset)
dataset.X
has three columns and the above code transforms dataset.X
but what if one needs to apply a different transformation for each column of the input.